© Kamla-Raj 2006 Int J Hum Genet, 6(2): 145-151 (2006)
PRINT: ISSN 0972-3757 ONLINE: 2456-6360 DOI: 10.31901/24566330.2006/06.02.06

Genetics of Castes and Tribes of India: Taste Sensitivity

M. K. Bhasin

Department of Anthropology, University of Delhi, Delhi 110 007, India

KEYWORDS Biological variation; genetic trait; ethnic groups; phenylthiocarbamide

ABSTRACT In the present paper and attempt has been made to study the distribution differences in tasting ability in India, which are analysed in relation to ecological, socio-economic and linguistic factors. Among population groups of India, the frequency of the taster allele (T) is 0.457 (varies from 0.108 to 0.912). It is present in high frequency among scheduled caste and in low frequency among community. Among the different zones, it is present in high frequency in population groups of Islands followed by North and South India and in low frequency in West and Central India, where it is low in scheduled tribe groups in general. In Himalayan region, its frequency is high (0.533) as compared to non-Himalayan region (0.426). From Eastern Himalayan region the frequency of allele T is low (0.538) among populations with Mongoloid affinities as compared to the Mongoloid populations of East Asia and Southeast Asia (0.70) which may be due to high frequency of goiter in this region. High frequency is observed in Austro-Asiatic and Tibeto-Chinese families than in Dravidian and Indo-European families.

INTRODUCTION

The importance of the ability to taste phenylthiocarbamide (P.T.C.) was realized long back in 1932 by Fox, when he failed to make any taste out of it, while his colleague found it to be bitter. Thereafter, Synder (1932) showed that the inheritance of the ability to taste P.T.C. was dependent on a single autosomal dominant gene. The simple model is, however, complicated by other factors like sex (Blakeslee and Salmon 1931; Falconer 1947; Mohr 1951; Pons 1955), age (Harris and Kalmus 1949a; Mohr 1951; Kalmus 1958; Glanville et al. 1964); the presence or absence of the saliva of the subject (Cohen and Ogden 1949) and also the strength of the test solution (Harris and Kalmus 1949b). These factors invariably modify the phenotypic expression and their genetic relationships to tasting and non-tasting alleles are not yet determined. It has been suggested that there are modifying genes at other loci (Stern 1960; Blumberg 1961) or otherwise, the penetrance of the two alleles may vary (Boyd 1950; Kalmus, 1958). Incomplete dominance and penetrance of the taster was suggested by Das (1958) and he estimated the degree of penetrance of taster gene to be 80 per cent, but it may be less (Das 1966). He further added that as it is most likely that the variation in the expression of the taster allele including its complete suppression could be due to extra-genic factors, the degree of penetrance might be different in different peoples, places, ages etc.

Postal Address: M. K. Bhasin, B-2 (GF), South City II Gurgaon 122 002, Haryana, India

There are various methods to distinguish tasters from non-tasters (Fox 1932; Parr 1934; Blakeslee and Salmon 1935; Boyd and Boyd 1937; Hartman 1939; Harris and Kalmus 1949a) but the sorting technique with serial dilutions of Harris and Kalmus (1949a) is widely used with minor modifications because of its superiority in discerning the threshold of the individual with near perfection.

Today, it has been established beyond doubt that the ability to taste P.T.C. exhibits a strong dimorphism in human populations. The above factors which modify the actual response itself, additional researches have brought to light a number of relationships to this polymorphism, the most prominent being the ties of the thyroid, as well as its activity as a goitrogen (Harris and Kalmus 1949b). A number of studies have shown an excess of non-tasters among individuals having adenomatous goiter (Harris et al. 1949; Kitchin et al. 1959; Azevedo et al. 1965) and in addition to this, it was found that athyreotic cretins were significantly more likely to be non-tasters than normal controls (Shepard and Gartler 1960; Frazer 1961). Non-tasters have also more susceptibility to dental caries (Chung et al. 1964) and diabetes mellitus (Terry and Segall 1947; Terry 1950).

Some more reports are also available regarding the association of non-tasters with diseases (Saldanha 1956; Beiguelman 1964; Brachtel and Walter 1974; Mourao and Salzano 1978); such associations remain merely reports, and detailed work would be needed to advance further comments in this direction. Similarly, no specific relationship exists regarding the association of

146 M. K. BHASIN

the ability to taste P.T.C. with the change of age, sex and social habits, *viz.*, smoking, dietary habits (Blakeslee and Salmon 1935; Hartman 1939; Falconer 1947; Akesson 1959). For critical review on this subject *see* Jörgensen (1969).

The frequency of the taster allele *T* is about 0.50 among European populations. Among Southwest Asian populations it varies from 0.43 to 0.75. Among Mongoloid populations of East Asia and Southeast Asia the frequency of allele *T* is very high (about 0.70, ranges from 0.55 to 0.95). The frequency among Tibetans varies from 0.62 to 0.67. Among Africans also the frequency is high, albeit less than Mongoloids (Mourant et al. 1976; Roychoudhury and Nei 1988).

IDENTIFY AND DISTINGUISH THE PEOPLE

For the biogenetical study of the people of India, researchers have generally used the following criteria to identify and distinguish the people: 1. Regional Groups, 2. Ethnic Groups, 3. Linguistic Groups, and 4. Religious Groups.

It should, however, be kept in mind that these are the convenient units of study, although there are significant levels of overlapping between them. For example, an occupational group pursuing traditional job inhabits a region, shares religion with other categories, belongs to one or the other language group and has an aggregation of ethnic properties. But in the human population genetic studies, out of these criteria one is chosen (Bhasin, 1988).

In the present study an attempt has been made to analyse the above mentioned biogenetical traits into 1. Regional Groups, 2. Ethnic Groups, 3. Traditional Occupational Groups and 4. Linguistic Groups (For details see Bhasin et al. 1994; Bhasin and Walter 2001, 2002; Bhasin 2006a, b)

Mean Weighted Values: To discern the pattern of regional groups, ethnic groups, traditional occupational groups and linguistic groups using the frequency data, the mean weighted values of the trait has been calculated and estimates for the various groups are presented.

FREQUENCY OF TASTE SENSITVITY AMONG INDIANS

The frequency of allele *T* among Indian populations is 0.457 (varies from 0.108 among Munda of Ranchi - Bihar to 0.912 in scheduled

caste of Andhra Pradesh) which is little low as compared to Europeans but similar to that of Southwest Asian populations. The frequency is highest from the Islands zone as compared to rest of the zones of India—North (0.488), South (0.483), Central (0.389) and West (0.369) India. Among the population groups from Himalayan region mostly with Mongoloid affinities, the frequency is highest (0.533) as compared to Non-Himalayan regions (0.426). The frequency of allele T is low in scheduled tribes (0.451) as compared to other groups with minor differences. It appears that populations with Mongoloid affinities possess high frequency of taster allele (T) and quite high frequencies are observed among the Mongoloids of Asia as compared to Indian tribal groups among whom high frequencies of the nontaster allele (t) are found. The frequency of allele T is high from Islands natural region (0.547) and also from the Himalayan mountain complex region (0.545), from where the frequency starts decreasing towards peninsular plateau. From the different climatic regions, the frequencies are high in polar, cold, humid and all monsoon type regions and is lowest in tropical savannah type region (0.377) (Bhasin et al. 1994; Bhasin and Walter 2001).

From East India, the frequency of allele T is quite low from the states of Bihar (0.298, varies from 0.108 to 0.490) and Orissa (0.324, ranges from 0.268 to 0.571) from where the frequencies are low among scheduled tribes as compared to rest of the ethnic groups, whereas from the states of Nagaland, Tripura, Meghalaya, Sikkim and Darjeeling district of West Bengal among the populations with Mongoloid affinities the frequencies are quite high (0.702, 0.597, 0.580, 0.694 and about 0.600, respectively).

Similar high frequencies are observed from Western Himalayan region among populations with Mongoloid affinities from the states of Jammu and Kashmir (Ladakhis - 0.762), Himachal Pradesh (Gurkhas - 0.615, Lahaulies - 0.643, Spitians - 0.654, Kinnaura - 0.606, Shipi - 0.662, Bodhs - 0.656, Savangalas - 0.626) and Uttar Pradesh - Central Himalayan region (different groups of Bhotias about 0.600, Gurungs - 0.656 among others). The frequency of allele *T* is also quite high among Newars; Sherpas and Tamangs combined; and Sherpas (0.523, 0.533 and 0.719, respectively) of Nepal and Tibetans (varies from 0.616 to 0.672) (For details see Bhasin et al. 1992).

The frequency of allele T is low among

scheduled tribes from Central India and it is almost similar among all the tribals except Dhurwa in which it is quite low (0.180). The frequency is quite high among different ethnic groups reported from South India (0.483, varies from 0.184 to 0.912) and it is highest among scheduled caste groups (0.662). The frequency of allele *T* is highest among the population groups with Mongoloid affinities from the Himalayan region followed by South Indians.

From West India the frequency of allele T is observed lowest (0.369, varies from 0.249 to 0.536) as compared to other zones and the frequencies are almost similar in both the states of Gujarat (0.368) and Maharashtra (0.371). Among the scheduled castes and scheduled tribes of West India (0.302 and 0.331, respectively) the frequencies are lowest as compared to rest of the groups.

Among the Nicobarese with Mongoloid affinities the frequency of *T* allele is high (0.595)

and from Andaman Islands, among Onges the frequency is 0.436 as compared to Bhantus, who had migrated from Uttar Pradesh (0.335).

In general, the frequency of taster allele T is high among the population groups with Mongoloid affinities from the Himalayan region but lower than the Mongoloid populations from Far East and Southeast Asia and lowest among the scheduled tribes. The frequency of allele T is low in West India and from there the frequency starts increasing in all the directions (Table 1, Fig. 1).

The allele frequency *T* correlations with various climatic factors and altitude by different ethnic groups though showing significant differences are not high (Table 2).

Among the different occupational groups, the frequency of allele *T* is almost similar among higher—priesthood (0.453), trade and commerce (0.459) and others—agriculture (0.481) and menial workers (0.474) groups, which indicates gene flow

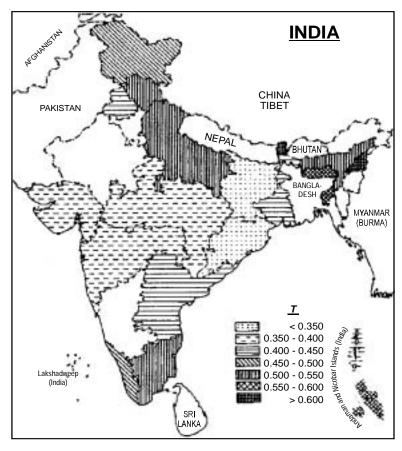


Fig. 1. Allele T of taste sensitivity in different regions of India

_
uencies
freq
Allele
) M
÷
sensitivit
ensitivit
aste sensitivit

tasic sensitivity (m)	mharr ar	(conon		r		n	. 1 . 1	N.T.		Luciano	T
Particulars Si	Subjects	No. of	Maga	rrec	٠.	Farnculars	Subjects	No. of	Moan	r requency 1	ICY I
	sinaiea	sinaies	Mean	MIN	Max		nammic	Simme		111 111	VIII.
1. NATURAL REGION						22. Bihar	1894	13	0.298	0.108	0.496
Himalayan Mountain Complex	6550		0.545		0.762	23. Orissa	3354	14	0.324	0.268	0.571
Indus-Ganga-Brahmaputra Plains	CA		0.469		0.664	IV. CENTRAL INDIA					
Peninsular Plateau			0.419		0.912	24 Modbar Dandoch	130	c	0 300	0 1 0	0 102
Islands	878	· ∞	0.547	0.335	0.678	V SOUTH INDIA	/00	7	0.307	0.100	0.403
NOIDER DECIDI						V. SOUTH INDIA		<			
2. CLIMATIC REGION		,			0	25. Karnataka	1 1	0 ;			1 (
Monsoon 1ype with Short Dry	1397	13	0.519	0.768	0.6/8	26. Andhra Pradesh	4346	58	0.447	0.184	0.912
Season						27. Tamil Nadu	3274	1.5	0.550	0.342	0.729
Monsoon Type with Dry Season		18	0.518	0.184	0.729	28 Verala	1211	0	907 0	7500	0 638
Tropical Savannah Type	_	93	0.377	0.108	0.912	20 mili	1211		0.4.0	0.43.0	0.030
Semi Arid Stenne Tyne	1442	7	0.448		0 577	29. Pondicherry UI	11011	4	0.400	0.303	0.477
Hot Desert Type	-					VI. ISLANDS					
Moncoon Type with Dry Winter	1008031	171	0.480	0 278	0 755	30. Lakshadweep UT	'	0	,	ı	ı
Cold Humid Winters with Short	271	-	0 631		0.631	31. Andman Islands and	188	2	0.370	0.335	0.436
Cummers William Short		٦	100.0	1000	0.001	Nicobar Islands IIT	069	٧	505	0.402	879 0
Dolar Tyne	492	"	0 650	0.643	0 762	3A ZONES OF INDIA					
rotat 1) pe		,	20.0	0.0	101.0	. 2	12526	8	0.488	0 278	0.762
3. POLITICAL DIVISION OF IN	IDIA					Tr vy . T .:	07071	5 6	0.400	0.70	707.0
I. NORTH INDIA						II. West India	000/	33	0.369	0.249	0.536
A. Western Himalaya (S. No. 1, 2)						III. East India	21155	86	0.453	0.108	0.755
1 Jammi and Kashmir	243	'n	0.460	0.370	0.762	IV. Central India	867	6	0.389	0.180	0.483
2. Himachal Pradesh	2395	~	0.508		0.654	V. South India	9842	56	0.483	0.184	0.912
3 Puniah	1608	10	0.410	0.248	0.586	VI Islands	0 0 0	9 04	7740	0 225	0 678
A Chandiarah IIT	2286	7	0 510	9.77	0.555	VI. ISIAIRAS	0/0	0	1.0	0.00	0.0.0
4. Chamagian Ci 5 Harvana	0077	\ C		0.4	0.00.	INDIA (TOTAL)	51775	276	0.457	0.108	0.912
	1462	6	0.421	0.288	0.532	3B REGIONS OF HIMALAVA	AVA				
B. Central Himalaya (S. No. 7, Eigh	11			(ys			0630	,	7020	3000	0 760
7. Uttar Pradesh		3.7		0.307	0.532		2030	17-	100.0	0.70	0.707
) 1	<u> </u>)	1	- '	1967	/ T	0.540	0.308	0.702
II.WEST INDIA		>				C. Eastern Himalaya	10228	43	0.538	0.348	0.755
9. Gujarat	3533	19	0.368		0.473	HIMALAYA (TOTAL)	15227	81	0.533	0.285	0.762
10. Maharashtra	2974	14	0.371	0.268	0.536	NON HIMAI AVAN DEGIONS	36518	105	7670	0 100	0.010
11. Goa, Daman and Diu UT	•	0		,	1	NON-HIMALAIAIN NEGIONS	اں	173	0.420	0.100	0.917
12. Dadra and Nagar Haveli UT	•	0		,	,	4. ETHNIC GROUP					
III. EAST INDIA		,			,	A. ZONES OF INDIA					
C. Eastern Himalaya (S. No. 13 to 20		and Darjeeling	District	of West Bengal)	3engal)	1. NORTH INDIA					
13. Arunachal Pradesh	0	0 8	1		1	Caste	5974	44	0.489	0.285	0.702
14. Assam	7324	57	CIC.0	0.348	0.664	Scheduled Caste	336	c:	0.478	0.458	0.489
15. Nagaland	5/3	n (0.702		0.755	Scheduled Tribe	1489	6	0.601	0 486	0.762
16. Manipur	1	Ō		ı	1	Community	1011	, 0	727	0.70	0 656
17. Mizoram	1 :	0		1	1	THE TAXABLE TAXABLE	17/1	07	764.0	0.770	0.030
18. Tripura	401	- !	0.597	0.597	0.597	II. WEST INDIA		(,	0
19. Meghalaya	1624	13	0.580	0.502	0.676	Caste	1665	×	0.410	0.318	0.485
20. Sikkim	261	7	0.694	0.638	0.733	Scheduled Caste	828	m	0.302	0.268	0.344
21. West Bengal	6024	17	0.433	0.272	0.528	Scheduled Tribe	1476	6	0.331	0.249	0.473

	Subjcects	No. of		Frequency	y T	Particulars 5	Subjcects	No. of		Frequency	I
	studied	studies	Mean	Min	Мах		studied	studies	Mean	Min	Мах
Community	2538	13	0.387	0.282	0.536	Community	2538	1	0.387		0.536
III. EAST INĎIA						Warfare	2265		0.499	0.325	0.702
Caste	4803	16	0.439	0.296	0.571	Trade and Commerce	1972	_	0.459		0.58
Scheduled Caste	3452	12	0.486	0.313	0.664	Agriculture	4255	7	0.481		0.67
Scheduled Tribe	8530	4 4	0.446	0.108	0.755	Animal Husbandry	538		0.295		0.348
Comminity	4370	1.4	0 454	0.272	0.578	Artisans	501		0.581		0.87
IV CENTRAL INDIA	2	-	•	1	0.5.0	Menial Workers	3673	_	0.474		0.91
Caste	1	_				No Information	30156	16	0.450		0.76
Casto Sobodulad Costs		- c	0 403	707	707	direct distribution in		1			
Scheduled Caste	1 7	- t	0.400	0.485	0.483	6. LANGUAGE GKOUF					
Scheduled Tribe	/1/	_	0.377	0.180	0.4/4	I. AUSTRO-ASIATIC FAMILY					
Community	79	_	0.405	0.405	0.405	Mon Khmer Group	1958	14	0.579		0.67
V. SOUTH INDIA						Munda Group	88	1	0.272	0.108	0.366
Caste	1636	∞	0.504	0.257	0.729	II. TIBETO-CHÎNESE FAMILY					
Scheduled Caste	1537	10	0.662	0 555	0 912	(i) Sigmose-Chinese Sub-Family	wilv				
Scheduled Tribe	4665	200	0.00	0.108	0.718	Tai Group		0			
Community	2005	0	227	0.170	0.507	(ii) Tibete-Rurman Cub-Family	ilv				
Community	1007	•	1111	0.104	0.337	Photic Caous			0270		72.0
T. ISLAMDS		(Dilotia Gioup	4,47		0.039		0.70
Caste	1	0	,	1	1	Himalayan Group	669	9	0.599	0.458	0.733
Scheduled Caste	1	0	1	1	1	North East Frontier Group	923		0.536		0.61
Scheduled Tribe	878	∞	0.547	0.335	0.678	Bodo Group	1924		0.576		0.66
Community		С	,	,	,	Naga Group	544		0.667		0.75
INDIA)				Kachin Groun	'				
Caste	14078	76	0.464	0.257	0.770	Kuki Chin Groun	'			,	1
Coboduled Costs	7,071	0 0	2020	0.000	0.00	III DRAVIDIAN FAMILY					
Scheduled Caste	1007	77	505.0	0.700	0.717	Court Dravidies Group	7200	_	0 4 60	-	2000
Scheduled 1 ribe	17.55	106	0.451	0.108	0.762	South Diavidian Group	1370	1 -	701.0		0.0
Community	13718	65	0.436	0.184	0.656	Central Dravidian Group	1/67	_ `	0.429	0.180	0.080
B. REGIONS OF HIMALAYA						North Dravidian Group			0.407	0.7	0.49
A Western Himalana						IV. INDO-EUROPEAN FAMILY		(
Casta	1535	13	750	286 0	9090	Dard Group					1
Schadulad Costa	17	. .	0.150	0.200	0.000	North Western Group		•			
Schoduled Tribe	707	- 6	0 650	0.430	0.450	Southern Group	3184	_	0.365		
Scheduled 1110e	101	J 4	0.037	0.01	0.707	Eastern Group	1391	_	0.492		
Community	194	4	0.499	0.548	0.021	Bihari	10383	7	0.462		
B. Central Himalaya		(Central Group	13255	82	0.447	0.248	0.702
Caste	'	0		,		Pahari Group	1810	_	0.476		
Scheduled Caste	1642	12	0.512	0.368	0.702	Unspecified	638	1	0.552		
Scheduled Tribe	099	4	0.600	0.575	0.615	Other Languages	330		0.378		
Community	59	1	0.656	0.656	0.656	No Information)				
C. Eastern Himalaya						WHITE DATE TO					
Caste	1070	n	0.439	0.375	0.484	I A THE A STATE FAMILIE	0.10.2		0 0		
Scheduled Caste	1947	4	0.544	0.402	0.664	I. Austro Asianc Family	0.000		0.5/5		
Scheduled Tribe	4638	2.7	0.589	0.394	0.755		4587		160.0		
Community	2573	6	0.484	0.348	0.578	III. Dravidian Family	10330	-	0.470	0.180	0.8/0
ETALIDOO ITAOMIA AM						1v. mdo European Family	30001	_	0.447		
5. IKADITIONAL OCCUPATI	10N 8/1/5	27	0.453	286 0	0.770	Other Languages	330	4 <	0.378		
Hosmood	,	,	1		;	IVO amotamaton		٥			

150 M. K. BHASIN

Table 2: Correlations with climatic factors and ethnic groups

Ethnic groups	Taste sensitivity T
Mean Annual Temperature	1
Caste	-0.222
Scheduled Caste	0.4131
Scheduled Tribe	-0.570^{3}
Community	-0.349^{2}
Total	-0.326^{3}
Mean Annual Rainfall	
Caste	-0.039
Scheduled Caste	-0.477^{2}
Scheduled Tribe	0.460^{3}
Community	0.221
Total	0.189^{2}
Mean Annual Humidity	
Caste	-0.239^{1}
Scheduled Caste	0.498^{2}
Scheduled Tribe	0.400^{3}
Community	0.061
Total	0.206^{3}
Mean Altitude	
Caste	0.276^{1}
Scheduled Caste	-0.249
Scheduled Tribe	0.351^{3}
Community	0.276^{1}
Total	0.203^{3}

- 1. Significant at P < 0.05
- 2. Significant at P < 0.01
- 3. Significant at P < 0.001

among them, as also observed for other genetic markers (Bhasin et al. 1994; Bhasin and Walter 2001).

Among the populations of Himalayan region with Mongoloid affinities, the frequency of allele *T* is high in Mon Khmer group (0.579) of Austro-Asiatic; in Bhotia group (0.659), Himalayan group (0.599), Bodo group (0.576), Naga group (0.667) of Tibeto-Chinese languages as compared to the speakers of Dravidian followed by Indo-Europeans and Munda group of Austro-Asiatic languages among whom the frequencies are low (0.470, 0.449 and 0.272, respectively) (Bhasin et al. 1994; Bhasin and Walter 2001).

Among population groups of India, the frequency of taster allele T is 0.457 (varies between 0.108 and 0.912). From the different zones, it is present in high frequency among population groups of Islands followed by North and South India and is low in West and Central India, as well as among scheduled tribe groups in general. In Himalayan region, it frequency is high (0.533) as compared to Non-Himalayan region (0.426).

From Eastern Himalayn region, the frequency of allele T is low (0.538) among populations with Mongoloid affinities as compared to the Mongoloid populations of East Asia and Southeast Asia (0.700) which may be due to high incidence of goiter in the former region (Bhasin et al. 1994). Among the speakers of various languages, the frequency is high in Austro-Asiatic (Mon Khmer) and Tibeto-Chinese speakers with Mongoloid affinities from Himalayan region and Nicobar Islands than in the speakers of Dravidian and Indo-European languages.

REFERENCES

Akesson HO 1959. Taste sensitivity to phenyl-thio-urea in tuberculosis and diabetes mellitus. *Ann Hum Genet*, 23: 262.

Azevedo EH, Krieger, MPM, Morton NE 1965. P.T.C. taste sensitivity and endemic goiter in Brazil. *Am J Hum Genet*, **17:** 87-90

Beiguelman B 1964. Taste sensitivity to phenylthiocarbamide among patients affected with both tuberculosis and leprosy. *Acta Genet Med Gemell*, 13: 190

Bhasin MK 1988. Biology of the Peoples of Indian Region (Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, Sri Lanka). A Classified and Comprehensive Bibliography. Delhi: Kamla-Raj Enterprises.

Bhasin MK 2006a. Genetics of Castes and Tribes of India: Glucose -6- Phosphate Dehydrogenase Deficiency and Abnormal Haemoglobins (HbS and HbE). *Int J Hum Genet*, **6:** 49-72.

Bhasin MK 2006b. Genetics of Castes and Tribes of India: A Review of Population Differences in Red and Green Vision Deficiency in India. *Int J Hum Genet*, **6:** 81-88

Bhasin MK, Walter H 2001. *Genetics of Castes and Tribes of India*. Delhi: Kamla-Raj Enterprises.

Bhasin MK, Walter H 2002. Genetics of Castes and Tribes of India: serum Protein Polymorphisms KM and GM Systems. *Int J Hum Genet*, **2:** 119-138.

Bhasin MK, Walter H, Danker-Hopfe H 1992. The Ditribution of Genetical, Morphological and Behavioural Traits among the People of Indian Region (Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, Sri Lanka). Delhi: Kamla-Raj Enterprises.

Bhasin MK, Walter H, Danker-Hopfe H 1994. People of India. An Investigation of Biological Variability in Ecological, Ethno-Economic and Linguistic Group. Delhi: Kamla-Raj Enterprises.

Blakeslee AF, Salmon, MR 1931. Odour and taste blindness. *Eugenical News*, **16**: 105-108.

Blakeslee AF, Salmon T N 1935. Genetics of sensory thresholds. Individuals taste reactions for different substances. *Proc Natl Acad Sci, USA*, **21:** 84.

Blumberg B S 1961. Inherited susceptibility to disease. *Arch Environ Health*, **3:** 612-636.

Boyd WC 1950. Genetics and Races of Man. Oxford: Blackwell.

- Boyd WC, Boyd LG 1937. Sexual and racial variations in ability to taste phenylthiocarbamide, with some data on inheritance. *Ann Eugen*, **8:** 46.
- Brachtel R, Walter H 1974. PTC-Schmeckfahigkeit und Psoriasis vulgaris. *Anthrop Anz*, **34**: 231.
- Chung CS, Witkop CJ, Henry JL 1964. A genetic study of dental caries with special reference to PTC taste sensitivity. Am J Hum Genet, 16: 231-245.
- Cohen J, Ogden DP 1949. Taste blindness to PTC as a function of saliva. *Science*, **110:** 532-533.
- Das SR 1958. Inheritance of the P.T.C. taste character in man: An analysis of 126 Rarhi Brahmin families of West Bengal. Ann Hum Genet, 22: 200-212.
- Das SR. 1966. Genetics of PTC taste character in man the incomplete dominance and penetrance of taste gene, pp. 250-258. In: Human Adaptability to Environments and Physical Fitness. M.S. Malhotra (Ed.). Defence Inst. Physiol. and Allied Sciences, Madras.
- Falconer DS 1947. Sensory thresholds for solutions of phenylthiocarbamide. Ann Eugen, 13: 211-222.
- Fox A 1932. The relationship between chemical constitution and taste. Proc Natl Acad Sci Washington, 18: 115-120.
- Frazer GR 1961. Cretinism and taste sensitivity to phenylthiocarbamide. *Lancet*, 1: 964-965.
- Glanville EV, Kaplan A R, Fischer R 1964. Age, sex and taste sensitivity. *J Gerontol*, **19:** 474-478.
- Harris H, Kalmus H 1949a. The measurement of taste sensitivity to P.T.C. Ann Eugen, 15: 24-31.
- Harris H, Kalmus H. 1949b. Genetical differences in taste sensitivity to phenylthiourea and to anti-thyroid substances. *Nature (Lond.)*, **163:** 878.
- Harris H, Kalmus H, Trotter WR 1949. Taste sensitivity to phenyl-thiourea ingoitre and diabetes. *Lancet*, ii: 1038-1039.
- Hartmann G. 1939. Application of individual taste difference towards P.T.C. in genetic investigation. *Ann Eugen*, **10:** 532.
- Jörgensen G. 1969. Schemecken und Riechen. In: Handbuch der Humangenetik. Vol. 1/2, PE Becker

- (Ed.). Stuttgart: Georg Thieme, Verlag. pp. 108-162.
 Kalmus H 1958. Improvement in the classification of the tasters genotypes. Ann Hum Genet, 22: 222-230.
- Kitchin FD, Howel-Evans W, Clarke CA, McConnell, RB and Sheppard P M 1959. P.T.C. taste response and thyroid disease. Brit Med J, i: 1069-1074.
- Mohr J 1951. Taste sensitivity to phenylthiourea in Denmark. *Ann Eugen*, **16:** 282-286.
- Mourant AE, Kopec AC, Domaniewska-Sobczak K 1976. The Distribution of the Human Blood Groups and Other Polymorphisms. 2nd Edition, Oxford London: University Press.
- Mouräo LACB, Salzano FM 1978. New data on the association between P.T.C. tasting and tuberculosis. Rev Brasil Biol. 38: 475.
- Parr LW 1934. Taste blindness and race. J Hered, 25: 187-190.
- Pons J 1955. Taste sensitivity to phenylthiourea in Spaniards. *Hum Biol*, **27:** 153-160.
- Roychoudhury AK, Nei M 1988. Human Polymorphic Genes. World Distribution. Oxford: Oxford University Press.
- Saldanha PH 1956. Apparent pleiotropic effect of gene determining taste threshold for *P.T.C. Lancet*, **ii**: 74.
- Shepard TH, Gartler SM 1960. Increased incidence of non-tasters of phenylthiocarbamide among congenital athryreotic cretins. *Science*, 131: 929.
- Stern C 1960. Principles of Human Genetics. San Francisco: W.H. Freeman.
- Synder (1932) cited from Bhasin MK, Walter H, Danker-Hopfe H 1994. People of India. An Investigation of Biological Variability in Ecological, Ethno-Economic and Linguistic Group. Delhi: Kamla-Raj Enterprises.
- Terry MC 1950. Taste blindness and diabetes in the coloured population of Jamaica. *J Hered*, **41**: 305-307
- Terry MC, Segall G 1947. The association of diabetes taste blindness. *J Hered*, **38:** 135-137.