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Aflatoxin Cause DNA Damage
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ABSTRACT Aflatoxins are food-borne secondary toxic fungal metabolites produced during the growth of Aspergillus
flavus and A. parasiticus. Aflatoxins are well known hepatotoxic, hepatocarcinogenic and mutagenic agents. These
effects are mainly due to adduct formation with DNA, RNA and protein. In addition, it also causes lipid peroxidation
as well as oxidative damage to DNA. AFB1 possess genotoxic potential in a variety of test systems. Other aflatoxin
has not been so extensively investigated, but in a variety of studies B2, G1, G2 and M1 have all shown evidence of
genotoxicity.

Aflatoxins were initially isolated and identified
as the causative toxins in ‘Turkey-X-disease’ in
1960 when 100,000 turkeys died in England (Asao
et al. 1965). Now it is well known that aflatoxins
(B1, B2, G1, G2) are food-borne secondary toxic
metabolites produced during the growth of
Aspergillus flavus and A. parasiticus group of
fungi. These are highly substituted coumarin
derivatives containing a fused dihydrofurofuran
moiety. Aflatoxin B1 and AFB2 are named
because of their strong blue fluorescence under
UV light, whereas AFG1 and AFG2 fluoresced
greenish yellow. The B-toxins are characterized
by the fusion of a cyclopentenone ring to the
lactone ring of the coumarin structure, while G-
toxins contained an additional fused lactone ring.
Aflatoxin B1 and to a lesser extent AFG1 are
responsible for the biological potency of
aflatoxin-contaminated feed. These two toxins
possessed an unsaturated bond at the 8,9
position on the terminal furan ring. Aflatoxin B2
and AFG2 are essentially biologically inactive
unless these toxins are first metabolically
oxidized to AFB1 and AFG1 in vivo. AFM1 and
M2 are hydroxylated derivatives of AFB1 and
B2 that may be found in milk, milk products or
meat (hence the designation M1). They are
formed by the metabolism of B1 and B2 in the
body of the animals following absorption of
contaminated feeds.

Aflatoxins can contaminate corn, cereals,
sorghum, peanuts and other oil seed crops.
Although natural occurrence of aflatoxins in
agricultural products has been reported from
many countries and on vast array of crops, the

levels of aflatoxins detected vary greatly from
area to area. In general, higher quantities of
aflatoxins were recorded in commodities from
tropical and subtropical countries where
environmental conditions are more congenial for
mouldy growth and toxin production. In a survey
of peanut products in North America, 19% of
1416 samples examined were contaminated with
an average level of 1 µg/kg (Stoloff 1977),
whereas, in Thailand 49% of 216 samples
contained AFB1 at an average level of 424 µg/kg
(Shank et al. 1972). As much as 260 µg of aflatoxin/
kg was found in the sample of oat in Sweden
shown contaminated with A. flavus (Smith and
Moss 1985). Very severe contamination may
sometimes occur. In parts of India 100% of maize
samples have been found contaminated with
aflatoxin in the range of 6,250-15,600 ìg/kg
(Krishnamachari et al. 1975).

Aflatoxins are present in food chain.
Consumption of aflatoxin in many parts of the
world varies from 0 to 30 000 ng/kg/day (Denning
1987). Aflatoxins have also been found in human
cord blood and apparently can enter the
developing fetus in humans and animals
(Denning et al. 1990; Applegren and Arora 1983).
In addition, aflatoxins have been found in human
breast milk, cow’s milk and dairy products
(Srivastava et al. 2001; Thirumala-Devi et al. 2001)
and infant formula (Aksit et al. 1997).

Marvan and his colleagues (1983) have
experimentally studied distribution of AFB1 in
goslings and chickens and according to AFB1
concentrations the organs and tissues were
categorized as follows: gonads; parenchymatous
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organs-liver and kidney; lymphopoietic organs-
spleen, bursa cloacalis and thymus; followed by
the endocrine glands and muscles; lungs have
low concentration and in brain, the lowest. In
Chinese hamsters Petr and his colleagues (1995)
have shown that after a single intraperitoneal
dose of 0. 1 mg AFB1/kg body weight, free AFB1
has been detected in blood, liver, kidney and
testis from minutes up to 8 to 10 hour after
injection.

Once inside the body, aflatoxin undergoes
enzymatic conversion by the microsomal mixed
function oxidase (MFO) primarily present in the
liver, but probably also present in the lungs,
kidneys and elsewhere. Aflatoxin B1 is converted
in the adult liver by the cytochrome P450 enzyme,
P450 III AY and in the fetal liver with P450 III A6
to AFQ1 the major metabolite of AFB1. Other
major metabolites in the human include AFM1,
aflatoxicol (AFL), AFLH1, AFP1, AFB2á and
AFB1-2, 2-dihydrodiol. About 80% of a total dose
of AFB1 is excreted in 1 week. The plasma half-
life is 36.5 min, volume of distribution 14% of
body weight and body clearance is 1.25 L/kg/h.
Aflatoxin M1 is mostly excreted within 48 h of
ingestion. It is possible that its measurement
gives a reasonable estimate of recent aflatoxin
ingestion (Hendrickse 1991).

Cytochrome P450 IIIA4, which can both,
activate and detoxicate AFB1, is found. Only one
of these, the 8, 9-exoepoxide appears to be
mutagenic and others are detoxification products.
The putative AFB1 epoxide is generally accepted
as the active electrophilic form of AFB1 that may
attack nucleophilic nitrogen, oxygen and sulphur
heteroatoms in cellular constituents (Guengerich
et al. 1996). This highly reactive substance may
combine with DNA bases such as guanine to
produce alterations in DNA (Hendrickse 1991).
This may be the most important product from the
carcinogenic point of view.

Formation of these adducts disrupts the
normal working process of the cell and in the
case of DNA adducts, can ultimately lead to a
loss of control over cellular growth and division.
Human metabolised AFB1 to the major aflatoxin
B1-N7 guanine adducts at levels comparable to
those in species, which are susceptible to
aflatoxin-induced hepatocarcinogenicity such as
the rat.

However, both humans and animals possess
enzymes system, which are capable of reducing
the damage to DNA and other cellular

constituents caused by the 8,9-epoxide. For
example glutathione-S-transferase mediates the
reaction (termed conjugation) of the 8,9-epoxide
to the endogenous compound glutathione. This
essentially neutralizes its toxic potential. Animal
species such as the mouse that are resistant to
aflatoxin carcinogenesis have 3-5 times more
glutathione-S-transferase activity than suscepti-
ble species such as the rat. Humans have less
glutathione-S-transferase activity or 8,9-epoxide
conjugation than rats or mice suggesting that
humans are less capable of detoxifying this
important metabolite.

Presence of AFB1-DNA adduct was identi-
fied both in vivo and in vitro (Groopman et al.
1980). The binding of AFB1 residues to DNA in
vivo is essentially a linear function of dose at a
given time after treatment. A modification level
of 125-1100 AFB1 residues/107 nucleotides was
observed in rat liver 2 hour after i.p. dosing with
0.125 to 1.0 mg AFB1/kg (Croy et al. 1978). Initial
binding levels in DNA have been observed to
drop rapidly within hour after the AFB1 treatment
(Groopman et al. 1980, 1988). For example
maximum modification of rat liver DNA (1250
residues/107 nucleotides) was noted not later than
30 min after 1 mg AFB1/kg dose but declined to a
level of 160 residues/107 nucleotides 36 hour after
treatment, giving an apparent half-life of AFB1
binding to DNA of approximately 12 hour
(Pohland and Wood 1987; Cullen and Newberne
1994; Groopman et al. 1996).

In circulation, aflatoxin binds with plasma
proteins especially albumin to form aflatoxin-
albumin adduct (Autrup et al. 1991).  Sabbioni et
al. (1987) have elucidated the structure of the
major aflatoxin-albumin adduct found in vivo. The
protein adduct by binding of the 8,9 epoxy
aflatoxin initially forming dihydrodiol with
sequential oxidation to dialdehyde and conden-
sation with the S-amino group of lysine. This
adduct is an Schiff base that undergoes Amadori
arrangement to an µ-aminoketone. This protein
adduct is a completely modified aflatoxin struc-
ture retaining only the coumarin and cyclopen-
tenone rings of the parent compound. These
adduct represent the cumulative dose of aflatoxin
intake over previous weeks. The average half-
life of albumin in people is about 20 days.
Therefore, an accumulated dose of aflatoxin will
be present in albumin long after the dietary
exposure has ceased. This is a property not found
for DNA adduct because the half-life of DNA
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adduct is about 12 hour and then rapidly excreted
in urine.

Aflatoxin concentration recorded in the
serum of human beings varies with the amount
and duration of aflatoxin-ingested and the
physiological state of the body. Both unmeta-
bolized (B1, B2, G1, G2) as well as metabolized
forms (aflatoxicol, M1 and M2) of aflatoxins get
excreted in the urine, stool and milk (Coulter et al.
1986; De Vries et al. 1987; Verma and Chaudhari
1997). Verma and Chaudhari (1998) also reported
presence of seven different types of aflatoxins
(B1, B2, G1, G2, M1, M2, aflatoxicol) in the saliva
of human beings. Aflatoxin excreted/secreted
through saliva might be getting absorbed in
gastrointestinal tract and passing again to the
blood stream. This explains a sort of recycling of
aflatoxin in the body.

Aflatoxin (0.35- 3.5 µg/ml) exposure to
hepatocytes in vitro caused pronounced swell-
ing, polymorphic condition, bleb formation and
lysis (Raval and Verma 1997). Aflatoxin B1 is
reported to induce cytotoxicity and transfor-
mation in culture cells (Schwartz and Perantoni
1975). Kaden et al. (1987) noted mutations besides
toxicity as a result of AFB1 exposure to TK6 and
HrM1 cells in culture. Cytotoxicity of aflatoxin
on mouse hepatoma cell line HePa-1 was reported
by Karenlampi (1987). When RBC suspension
was treated with aflatoxin in vitro, a concentra-
tion-dependent swelling followed by lysis was
observed indicating permeability alterations and
membrane destabilization (Verma and Raval 1991).
The earliest effect of aflatoxin is to reduce protein
biosynthesis by forming adducts with DNA,
RNA and protein, to inhibit RNA synthesis and
DNA dependent RNA polymerase activity and
to cause degranulation of the endoplasmic
reticulum (Pohland and Wood 1987; Cullen and
Newberne 1994; Groopman et al. 1996).

Intracellular calcium accumulation had been
reported in the liver, kidney, testis, adipose tissue,
heart and skeletal muscle of rabbits (Verma et al.
1998). Increased accumulation of calcium causes
mitochondrial swelling (Rainbow et al. 1994) and
reduced mitochondrial activity and ATP content
(Toskulkao and Glinsukon 1988) thus impairing
the operation of the sodium pump. Aflatoxin B1
preferentially attacks mitochondrial DNA during
hepatocarcinogenesis vs. nuclear DNA (Niranjan
et al. 1982). Mitochondrial DNA is protected in
aflatoxicosis resistant rodents from DNA
adducts that affect mitochondrial transcription

and translation (Niranjan et al. 1986).  The
mycotoxin alters energy-linked functions of ADP
phosphorylation and FAD and NAD-linked
oxidizing substrates (Sajan et al. 1996) and a-
ketoglutarate-succinate cytochrome reductases
(Obasi 2001). It causes ultrastructural changes
in mitochondria (Shanks et al. 1986; Rainbow et
al. 1994) and also induces mitochondrial directed
apoptosis (Pasupathy et al. 1999).

Several studies (Nicotera et al. 1992) have also
suggested that calcium activated catabolic
processes are involved in cytotoxicity. Fagian et
al. (1990) demonstrated that reversible
permeabilization induced by calcium plus pro-
oxidant is associated with oxidation of membrane
protein thiols, forming cross-linked aggregates.
Castilho et al. (1995) proposed that calcium plus
pro-oxidant significantly reduced mitochondrial
GSH and NADPH, substrates of the antioxidant
enzyme glutathione peroxidase and glutathione
reductase respectively, favouring accumulation
of H2O2. Turrens et al. (1991) demonstrated that
accumulation of calcium in mitochondria
mobilized iron which in turn could stimulate the
production of OH· from H2O2.

The results of Hoehler et al. (1996) suggest
that ochratoxin A increases the permeability of
the cell to calcium. They also indicated that both
the enhanced cellular concentration of calcium
and the presence of prooxidant OA uncoupled
oxidative phosphorylation resulting increased
leakage of electrons from the respiratory chain
producing O2· and hence H2O2. Lack of an
adequate supply of NADPH and GSH to permit
H2O2 consumption by the GSH-dependent
glutathione peroxidase and NADPH-dependent
glutathione reductase together with an increased
concentration of free iron within the cell,
stimulates the production of OH· via a Fenton
reaction due to mobilization of ferrous by calcium.

Possibly an increase in AFB1-8, 9-epoxide (an
active metabolite of AFB1) cause significant
increases in hepatic lipid peroxide level
(Toskulkao et al. 1982). Peroxidation of membrane
lipids initiated loss of membrane integrity;
membrane bound enzyme activity and cell lysis
(Younes and Siegers 1984; Toskulkao et al. 1982;
Toskulkao and Glinsukon 1988). The increased
lipid peroxidation in aflatoxin treated animals is
in agreement with findings reported previously
for rat liver (Toskulkao and Glinsukon 1988: Shen
et al. 1994). Lipid peroxidation was significantly
increased in the liver, kidney (Verma and Nair
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1999) and testis (Verma and Nair 2000) of
aflatoxin-treated mice as compared to controls.
The oxidative damage in a cell or tissue occurs
when the concentration of reactive oxygen
species (O2·, H2O2, and OH·) generated exceeds
the antioxidant capability of the cell (Sies 1991).
Therefore, it could be due to significant decreases
in the levels of non-enzymatic antioxidant (e.g.
vitamin C, vitamin E, glutathione) and enzymatic
antioxidants (superoxide dismutase, glutathione
peroxidase and catalase), which are the main
determinants of the antioxidant defence
mechanism of the cell.

Superoxide dismutase protects cells from
oxidative damage by breaking down a potentially
hazardous free radical superoxide (O2·) to H2O2
and O2· The H2O2 produced can then be
decomposed enzymatically by catalase and
glutathione peroxidase (GSH-Px). GSH-Px not
only decomposes H2O2 but can also interact with
lipid peroxidation (Venkateswaran et al. 1967). The
decline in these enzyme activities could be due
to a reduction in protein biosynthesis. Glutathione
levels declined significantly in the liver, kidney
and testis after 45 days of aflatoxin treatment,
which suggests its rapid oxidation. GSH can
inhibit peroxidation, scavenge free radicals and
protect cell membranes (Patel 1987). Thus
significantly lower GSH levels would further
aggravate the toxic effects of aflatoxin.

During the free radical scavenging action,
ascorbic acid is transformed into L-dehydro-
ascorbate (Eastwood 1997). Reduced glutathione
is required for the conversion of L-dehydro-
ascorbate back to ascorbate (Eastwood 1997).
The fall in the level of reduced glutathione
decreases the conversion of L-dehydroascorbate
to ascorbate and this probably explained the
lowered level of ascorbic acid in the aflatoxin-
treated animals.

Glutathione has a beneficial effect by virtue
of possessing –SH groups that help to protect
biological membranes, which are readily
susceptible to injury by peroxidation. Breimer
(1990) reported that free radicals produced in
biological membranes rapidly react with alpha
tocopheryl radicals. Cytosolic GSH and ascorbic
acid help in the regeneration of alpha tocopherol.

In addition, oxidative stress may result in
damage to critical cellular macromolecules
including DNA, lipids and proteins (Breimer
1990). Cellular fatty acids are readily oxidized by
ROS to produce lipid peroxyl radicals which can

subsequently propagate into MDA may result
in the interaction with cellular DNA-MDA
adducts (Shen et al. 1994, 1995). A time- and dose-
dependent increase in 8-hydroxydeoxy-
guanosine (8-OHdG) was observed in rat hepatic
DNA after a single intraperitoneal injection of
AFB1. It indicates that AFB1 causes oxidative
DNA damage in rat liver that may involve
hydroxyl radicals as the initiation species (Shen
et al. 1995; Gradelet et al 1998). Therefore, factors
interfering with the generation or action of
hydroxyl radical would affect the formation of 8-
OHdG. Proteins is also easily attacked by ROS
directly or indirectly through lipid peroxidation
modify their enzyme activity (Clayson et al. 1994).

There is considerable in vitro and in vivo
evidence to support the view that humans
possess the biochemical processes necessary
for aflatoxin-induced carcinogenesis. Thus, the
presence of DNA and protein aflatoxin adducts,
urinary excretion of aflatoxin B1-N7-guanine
adducts and the ability of tissues to activate
aflatoxin B1 have all been demonstrated for
humans. In addition, studies have suggested that
oncogenes are critical molecular targets for
aflatoxin B1. A high frequency of mutations at a
mutational ‘hotspot’ has been found in p53
tumour suppressor genes in hepatocellular
carcinomas from the patients residing in areas
considered to offer a high risk of exposure to
aflatoxins, and where there is a high incidence of
hepatocellular carcinoma (Deng and Ma 1998).
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