
© Kamla-Raj 2001 IJHG 1(1): 55-63 (2001)
PRINT: ISSN 0972-3757 ONLINE: ISSN 2456-6330                                            DOI: 10.31901/24566330.2001/01.01.06 

KEY WORDS Multifactorial disease; genome screen;
candidate gene; linkage; association.

ABSTRACT  The etiology of many human diseases is com-
plex. The number of factors involved, the importance of
their individual effect and the level of heterogeneity are
unknown. To unravel the genetic etiology of these diseases,
a popular strategy is to search for genetic risk factors by
testing linkage systematically over the entire genome. The
power of such an approach very much depends on the un-
known characteristics of the genetic factors and the main
difficulty is to establish a good trade-off between false posi-
tives and false negatives. Avoiding a high rate of false posi-
tives will lead to low power for detecting a genetic factor
with a moderate effect. In addition, when a genetic factor is
detected, the precise localisation of this factor is generally
not possible under this method. To go further in the identi-
fication of factors involved in the disease process, one has
to set up a candidate gene strategy. If the candidate gene
polymorphism is not directly available, information may
be obtained through closely linked markers. In such a case,
we may expect, in addition to linkage, allelic association
between the candidate gene and marker alleles. However,
the choice of candidate genes as well as markers showing
allelic association is not simple. Some have proposed to
consider every gene as a candidate and to screen the whole
genome using the Transmission Disequilibrium Test. How-
ever, the problems of multiple testing and of heterogeneity
between populations may cripple this approach. Despite
extraordinary advances in molecular and computer tech-
niques, it is likely that for multifactorial diseases the only
genetic risk factors that can be detected are those with fairly
strong effect. Even in this case, it is important to design
strategies that increase the power of detection.

INTRODUCTION

Advances in molecular and computer tech-
niques have spurred the search for genes in-
volved in human diseases. Most human dis-
eases are multifactorial in the sense that they
are due to several risk factors, both genetic
and environmental. We face the difficulty of
untangling genetic risk factors from familial
environment and from cultural factors. The
segregation of a trait in families due to cul-
tural background may very well mimic a ge-
netic transmission. This was nicely illustrated
by McGuffin and Huckle (1990) showing that
the familial segregation of “attending Medi-

cal School” very well fits a recessive gene
transmission.

In many studies of multifactorial diseases,
the importance of genetic factors is quantified
by the increased risks for relatives of affected
as compared to the general population (Risch
1987). As a matter of fact, these values are
only measurements of familial aggregation.
They do not differentiate among the respec-
tive contribution of genetic factors, familial
or cultural environment. Moreover, based on
some simplistic hypotheses such as multipli-
cative and equal effect of each genetic factor,
some research studies even go as far as postu-
lating the number of genetic factors to be de-
tected. In reality, we unfortunately do not
know how many genetic factors are involved,
how important their individual effects are, how
they interact together as well as with the envi-
ronmental factors. The power to detect a gene
involved in the disease (susceptibility disease
gene) actually depends on the difference in the
genotype distribution between affected and
unaffected individuals in the studied popula-
tion. This difference may vary from one popu-
lation to another. Heterogeneity between
populations is an additional difficulty in the
study of multifactorial diseases.

In a given population, a genetic risk factor
may be detected using genetic markers through
correlation between the disease status and
marker genotypes. Such a correlation exists
either at the population level (tested by asso-
ciation studies) or at the family level (tested
by linkage studies). The studies may be per-
formed either systematically on the whole ge-
nome or by focusing on candidate genes. We
will discuss in this paper the respective pros
and cons of these two approaches. Besides, we
will show that the difficulty to unravel the
genetic component of a multifactorial disease
does not reside, as some believe, in the choice
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of a strategy but mainly in the uncertainty on
what we are looking for.

SYSTEMATIC SCREENING OF THE
GENOME BY LINKAGE TESTS

Linkage between a genetic marker and a dis-
ease means that the disease and marker trans-
missions in families are not independent. This
implies the presence of a disease susceptibility
gene in the marker region.

For a long time, the most widely used method
has been the lod score method, proposed by
Morton (1955). The method was meant to apply
to traits with known mode of inheritance and it
has been very successful to locate genes of dis-
eases with Mendelian inheritance. These suc-
cesses have generated great enthusiasm among
genetic epidemiologists and promoted the naive
idea that systematic screening of the genome by
Morton’s lod score method would allow deter-
mining the genetic basis of any human disease.

In Morton’s lod score test, the key param-
eter is the recombination fraction which mea-
sures the proportion of recombined gametes from
parents to their children. Estimation is thus pos-
sible when, for each family member, the geno-
type is known at each locus. If a disease is con-
trolled by a gene at one of these loci (disease
locus), the computation of a lod score for a given
family requires to consider all possible genotypic
configurations at the disease locus and to com-
pute the probabilities of these configurations
given the phenotypic information for the disease.

For a multifactorial disease, the underlying
model is unknown. If its specification is incor-
rect, the recombination fraction, will not be cor-
rectly estimated (Clerget-Darpoux et al. 1986)
and the true location of the risk factor may be
wrongly excluded (Clerget-Darpoux and
Bonaïti-Pellié 1993). To address the case of link-
age studies for diseases with unknown mode of
inheritance, we suggested (Clerget-Darpoux et

al. 1986) extending the lod score function to a
so-called mod score function. In the mod score,
the variables are both the recombination frac-
tion and the disease model parameters. Since it
is asymptotically maximum for the true disease
model, the power to detect linkage through mod
score will be highest when the space of models
where the maximisation is performed includes
the true model. As the disease model may be
very complex, it may require many parameters.
On the other hand, one must avoid over-
parametrisation. This overparametrisation  leads
to many different parameter sets giving the same
mod score. Consequently, the advantages of such
an approach compared to other model free sta-
tistics are disputable (Clerget-Darpoux 2000).

An alternative and very popular strategy,
which is applied to test linkage when the mode
of inheritance is unknown, is the sib-pair Maxi-
mum Lod Score (MLS) test proposed by Risch
(1990). In this approach, the variable of interest
is no more the recombination fraction, as in
Morton’s lod score, but the distribution (z2,z1,z0)
measuring the proportion of times affected sibs
share 2,1 or 0 marker alleles Identical By De-
scent (IBD). Under the null hypothesis of no link-
age, the expected distribution is (0.25, 0.50,
0.25). Under the alternative hypotheses of link-
age, it differs from (0.25, 0.50, 0.25) and com-
plies with the triangle constraints (Suarez 1978;
Holmans 1993) with z0 + z1 + z2=1 and 2z0 ≤ z1 =
0.5. Table 1 compares the Morton’s and Risch’s
lod score statistics.

Of course the statistical properties (type I
error, power) also differ. Holmans (1993) and
Eichenbaum-Voline et al. (1997) studied the
properties of the MLS in the case of a single
marker. The power to detect linkage depends not
only on the characteristics of the risk factor but
also on the informativity of the marker. The in-
formation may be increased by simultaneously
considering linked markers (Kruglyak and
Lander 1995a).

Table 1: Lod score statistics for testing linkage Z(H1) = log10 [L(H1) / L(H0)]

Variable H0 H1

Morton (1955) Recombination fraction θ 1/2 0 = θ < 1/2 Specification of model at disease locus

Risch (1990) IBD vector (1/4, 1/2, 1/4) Z ≠ (¼,½,¼) “model free”
Z =(z2,z1,z0) +

2 z0 ≤ z1 ≤ 0.5
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In a systematic screening approach, linkage
is tested with many markers and the MLS thresh-
old which corresponds to a type I error must be
evaluated according to the set of tested markers.
Lander and Kruglyak (1995) considered the situ-
ation of testing linkage at any point of the ge-
nome (full density and full polymorphism of the
marker map). In this case, they showed that for
a type I error of 5%, the MLS threshold is 4. For
a less dense map, markers spaced 10cM, and for
the same type I error, the threshold is 3.07
(Quesneville, personal communication). Conse-
quently, the power to detect an existing risk fac-
tor depends on the underlying model for this risk
factor, on the map characteristics (density and
informativity of each marker) and on the sib pair
sample size.

We have studied the properties of MLS dis-
tribution in four examples of susceptibility genes
having a demonstrated involvement in multifac-
torial diseases (Table 2).
! M1 corresponds to the APOE gene in

Alzheimer’s disease (AD). The ApoE gene
has three alleles ε2, ε3 and ε4, with respec-
tive frequency of 5%, 80% and 15%. The
penetrance of the ε4ε4 genotype (risk for an
ε4ε4 individual) and of the ε4ε3 genotype
has been estimated to be 11.9 and 2.2 times
the one of the ε3ε3 genotype respectively
(Bickeböller et al. 1988). For such relative
risks, the expected IBD distribution in af-
fected sib pairs is z2 =0.36, z1 = 46,z0 = 0.18.

! M2 corresponds to the insulin gene in Insu-
lin Dependent Diabetes Mellitus (IDDM).
The frequency of an allele of a flanking poly-
morphism of the insulin gene was shown to
be increased in IDDM (0.85) as compared to
the general population (0.70) (Bell et al.
1984). However, the IBD distribution ob-
served on 95 affected sib pairs available in
the Genetic Analysis Workshop 5 (Spielman
et al. 1989) was z2 = 0.26, z1 = 0.50, z0 = 0.24
and did not give evidence for linkage in this
region. This is a very nice illustration that a
susceptibility factor may be more detectable
through association information than through
linkage information (Cox and Spielman
1989) and, as an anecdote, gave rise to the
Transmission Disequilibrium Test (TDT)
(Spielman et al. 1993). This is particularly

true for the effect of a very frequent allele
with a dominant effect, as it is the case for
the insulin gene in IDDM.

! M3 corresponds to the role of HLA in Mul-
tiple Sclerosis (MS). In this example, the im-
plication of HLA is again better demonstrated
by the strong association of the disease with
the DR15 antigen than by linkage studies
(Yaouancq et al. 1999). In 116 French sib
pairs affected by MS and described in Reboul
et al. (2000), the IBD distribution observed
for HLA is z2  = 0.34, z1 = 0.48, z0  = 0.18.

! M4 corresponds to the role of HLA in IDDM.
In contrast with the above examples, the IBD
distribution is very distorted from (0.25, 0.50,
0.25). Only 15 affected sib pairs were suffi-
cient for Cudworth and Woodrow (1975) to
conclude to linkage. In a very large sample
pooled from literature, the IBD distribution
for HLA in IDDM is z2  = 0.58, z1 = 0.36,
z0 = 0.06.

Table 2: Four examples of IBD distribution correspond-
ing to a susceptibility factor in a multifacto-
rial disease

IBD distribution in
affected sib pairs

Z2 Z1 Z0

M1 = APOE in Alzheimer’s disease 0.36 0.46 0.18
M2 = Insulin in Type I diabetes 0.26 0.50 0.24
M3 = HLA in Multiple Sclerosis 0.34 0.48 0.18
M4 = HLA in Type I diabetes 0.58 0.36 0.06

In these four examples, we have evaluated
the power of linkage detection by a systematic
screening on 100 affected sib pairs and two dif-
ferent marker maps 10cM and 2cM between
markers respectively. In both cases, the markers
have 10 equifrequent alleles and the risk factor
is strictly linked with one marker. The MLS dis-
tribution at each marker was obtained by simu-
lation using GENSIM (Kruglyak et al. 1996) for
the two marker maps. For the ten thousand rep-
licates of 100 affected sib pairs, the maximum
MLS (MaxMLS) and its position on the map
were recorded.

Table 3 gives, for each example and for each
map, the power to detect the risk factor (propor-
tion of times the MaxMLS exceeds the thresh-
old). For the first three examples, the power is
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very low. It is even null for the detection of the
insulin gene in IDDM. This is fully consistent
with the result of Concannon et al. (1998) who
obtained an MLS of 0.60 in the insulin region
for 607 affected sib pairs. As seen in table 3,
genetics is now faced with an amazing paradox.
The denser the marker map, the lower the power
to detect a susceptibility gene, for a given type I
error ! This is because the threshold criterion for
linkage conclusion increases with the number
of tested markers. This illustrates the difficulty
of the trade-off between false positives and false
negatives in the study of a multifactorial disease.

example of APOE in AD and for a 10cM map,
the probability for a MaxMLS to be greater than
the threshold is the same as the probability to be
smaller than 1. This may explain the weak power
of replicating a positive result in an independent
sample and the apparent discordance of results
between samples.

Lastly, figure 1 shows the variation of the
position of the MaxMLS retained for linkage
(over the threshold) in the M3 and M4 examples.
For M3 (HLA in MS), the position varies: only
one third of MaxMLS are at the correct location
and 14% of MaxMLS are obtained at more than
10cM from the true position. This indicates how
limited the resolution of linkage analysis in the
study of a multifactorial disease is. Hauser et al.
(1996) proposed to use the affected sib pair in-
formation on two markers for a simultaneous
estimation of the IBD distribution and of the re-
combination fraction. In fact, the likelihood sur-
face for such a parametrisation may be very flat
as indicated by our study and by the one of
Kruglyak and Lander (1995b).

Contrasting with the first three examples, the
power of detecting HLA in IDDM is 100% and
although the variability of MaxMLS remains
very large in that case, its value is always over
the threshold. In addition, the MaxMLS is ob-
tained 89% times at the true location. This shows
that no general conclusion about linkage genome
scans in multifactorial diseases can be given. For
those susceptibility factors inducing a large IBD

Table 3: Power of the MLS statistic in a sample of 100
affected sib pairs for a type I error of 5%

10cM marker map 2cM marker map
Prob (MaxMLS > 3.07) Prob (MaxMLS > 4)

M1 (APOE/AD) 18% 8%
M2 (INS/IDDM) 0% 0%
M3 (HLA/MS) 15% 8%
M4 (HLA/IDDM) 100% 100%

Table 4: 95% interval for the MaxMLS values

10cM marker map 2cM marker map

M1 (APOE/AD) [0.30     4.90] [0.54     5.07]
M2 (INS/IDDM) [0.00     2.02] [0.00     2.05]
M3 (HLA/MS) [0.35     4.62] [0.40     5.03]
M4 (HLA/IDDM) [7.53    19.70] [10.0    23.30]

The 95% intervals of the MaxMLS are given
in table 4. Note the huge variation of the
MaxMLS from one replicate to another. In the

Fig. 1. Position of MaxMLS for the 2cM map when linkage is detected. The true position of the risk factor is in the
middle of the map
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deviation from (0.25,0.50,0.25), then the power
of detection is good and the results are consis-
tent from one study to another. Unfortunately
when studying a multifactorial disease, it is im-
possible to know a priori whether some suscep-
tibility factor can be detectable by the system-
atic linkage approach. Among the many suscep-
tibility loci reported for IDDM, it is very diffi-
cult to distinguish those which may be false from
the true ones. Except HLA (IDDM1), INS
(IDDM2) and CTLA4 (IDDM12), all the others
have been suggested through genome screens
(see table 5, from Concannon et al. 1998). Ex-
cept for IDDM15, the analysis of pooled samples
performed by Concannon et al. did not confirm
any of the suggested loci in spite of the very large
sample sizes. Besides, it is possible that IDDM7,
12 and 13 – all located on chromosome 2q, 16cM
apart – reflect the same susceptibility locus. The
same may be said for IDDM5, 8 and 15 on chro-
mosome 6q.

Other model-free statistics than MLS would
lead to similar conclusions. In particular, the un-
certainly on the location is always correlated to
the uncertainty on the mode of inheritance.

It is sometimes argued that studying extended
pedigrees may provide more information that af-
fected sib pairs. Model free linkage statistics
have been developed that use information on
more distant relatives than sibs (Weeks and
Lange 1988; Bishop and Williamson 1990;
Kruglyak et al. 1996). In principle, one should
gain power by considering extended genealo-
gies rather than nuclear families. However, sev-
eral drawbacks must be considered. First, the

marker typing of several individuals of the ge-
nealogies are likely be missing. In this case, ap-
plying any linkage test requires the specifica-
tion of marker allele frequencies. Error on these
allele frequencies may dramatically increase the
rate of false positives. It is a major problem for
methods such as the APM method (Weeks and
Lange 1988) where unaffected members are sys-
tematically untyped (Babron et al. 1993) or in
the analysis of extended pedigrees where the first
generations are missing (Ott 1992; Freimer et
al. 1993). In addition, large genealogies with
many affected members are rare, not represen-
tative of the disease segregation and it is tempt-
ing to pool them from different populations
which can be heterogeneous in the marker al-
lele frequencies (Margaritte-Jeannin et al. 1997).
Besides, for diseases with large clinical spec-
trum, it is more difficult to select affected per-
sons with a homogeneous phenotype, thus in-
creasing even more the genetic heterogeneity in
the studied sample. Lastly, pedigrees with many
affected may correspond to a different genetic
determinism, even sometimes to a monogenic
subentity.

In conclusion, only those factors with a fairly
strong effect (inducing a large IBD deviation)
will be detectable in a consistent way by linkage
genome scans. For factors with moderate effect,
we may obtain discordant results from different
samples and other information have to be used
to confirm the existence of a susceptibility dis-
ease gene. In any case, genome scans indicate -
at best - a region in which a risk factor lies. To
further identify the factors involved in the dis-
ease process, one has to set up a candidate gene
strategy (Clerget-Darpoux 1998).

CANDIDATE GENE STRATEGY

Contrarily to systematic screening, one may
focus on specific genes called “candidate genes”.
These genes may be chosen as candidates be-
cause of their functionality. For example, the
HLA and insulin genes are good candidates for
IDDM. Candidates may also be chosen for their
position, because they are located either in a re-
gion showing linkage or in a region homologous
to one identified in another species. Here, the ques-
tion addressed is not to localise a “disease gene”

Table 5: Second generation screen of IDDM suscepti-
bility loci by Concannon et al. (1998)

Susceptibility locus Location #of pairs MLS

IDDM1 (HLA) 6p21 618 32.5
IDDM2 (INS) 11p25 607 0.60
IDDM3 15q26 506 0.03
IDDM4 11q13 778 0.43
IDDM5 6q25 852 1.46
IDDM6 18q21 302 0.00
IDDM7 2q31 653 0.72
IDDM8 6q27 730 1.14
IDDM9 3q21 543 0.23
IDDM10 10cen 609 0.40
IDDM11 14q24 433 0.28
IDDM12 (CTLA4) 2q33 585 0.84
IDDM13 2q34 418 0.36
IDDM15 6q21 772 3.51
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but to demonstrate the role of the considered
candidate gene in the disease and to calculate
the risk for an individual to develop the disease
according to the available information on this
candidate gene.

When the functional polymorphism is avail-
able, the relative risk associated to each geno-
type may be estimated through random case and
control samples as illustrated for ApoE in
Alzheimer’s disease (Bickeböller et al. 1988).
The six ApoE genotypes correspond to differ-
ent risks of developing Alzheimer’s disease.

However the functional genotypes of the can-
didate gene are not always observable. The in-
formation on a genetic marker situated at or near
the candidate gene locus can then be used. Two
kinds of information may be considered:

• at the family level, linkage between the
disease status and the marker genotype

• at the population level, allelic association
between the marker and the disease loci
(often improperly called linkage disequi-
librium)

Most investigation methods on the role of a
candidate gene use only one type of informa-
tion (population or family). However, simulta-
neously taking into account the information on
both the familial segregation and the population
association of the marker with the disease in-
creases the power of detecting the involvement
of a candidate gene as a risk factor. This is the
strength of the transmission/disequilibrium test
(TDT) (Spielman et al. 1993).

This test applies to unrelated affected indi-
viduals who, as well as their two parents, have
been typed for a biallelic marker (M1, M2). It
compares the number of times the alleles M1
and M2 are transmitted and untransmitted from
heterozygous parents M1M2 to their affected
offspring. No difference is expected either in the
absence of allelic association or in the absence
of linkage. Consequently, a difference implies
both linkage and association. The principle of
this test has been extended to the case of multi-
allele marker loci (Sham and Curtis 1995;
Bickeböller and Clerget-Darpoux 1995). Fur-
thermore, the alleles not transmitted to the af-
fected child(ren) create an internal family-based
control group permitting estimation of relative
risk (Falk and Rubinstein 1987; Terwilliger and

Ott 1992; Knapp et al. 1993). A comprehensive
review of these methods may be found in Schaid
(1996).

The relative power of the TDT and IBD tests
on sib pairs depends on both the underlying ge-
netic model and the available family data. When
allelic association is strong, the TDT can be more
powerful than the IBD test (Clerget-Darpoux et
al. 1995). This is well illustrated by showing the
role of insulin in IDDM (Spielman et al. 1993)
or of an HLA factor in multiple sclerosis
(Yaouancq et al. 1997). In contrast, it is impor-
tant to stress that the power of TDT is null in the
absence of allelic association.

Modelling the effect of a gene, after its in-
volvement has been shown, is a neglected step
while it may considerably increase the power to
detect other risk factors. In that case also, one
may take advantage of the two types of infor-
mation (allelic association and linkage) to evalu-
ate the risk associated to each genotype. The
Marker Association Segregation Chi-square
(MASC) method (Clerget-Darpoux et al. 1988)
was designed to achieve such a goal. It has been
applied to model the role of HLA in IDDM
(Clerget-Darpoux et al. 1991), in rheumatoid
arthritis (Dizier et al. 1994; Génin et al. 1998)
and in coeliac disease (Clerget-Darpoux et al.
1994; Bouguerra et al. 1999).

Candidate gene strategy appears thus to have
several tangible benefits over systematic link-
age tests on the whole genome. First, focusing
on a small number of genes limits the number of
tests. Second, information may be gained
through allelic association, the ideal situation
being complete allelic association i.e. working
on the alleles of the functional factor itself. Un-
fortunately, selecting good candidate genes or
markers showing allelic association is no simple
matter.

The candidate genes may be chosen for their
function. Such a choice requires a good knowl-
edge of the disease physiopathology. However,
this situation is rare since genetic studies on mul-
tifactorial diseases are mainly designed to bet-
ter understand the disease process. Conse-
quently, as proposed by Risch and Merinkangas
(1997), it may be tempting to consider any gene
as a candidate. We then face again the drastic
problem of multiple testing. Only those factors
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for which the genotype distribution is extremely
different between patients and controls may be
detected. If by chance, linkage studies or homol-
ogy with other species or any other means sug-
gest the presence of a risk factor in a given re-
gion, one may confine the search to the genes of
this region. Even in that case, the number of
genes to consider is extremely high since the
length of the region to consider is large.

Choosing intragenic polymorphic markers is
also a difficult task. The polymorphism of some
genes is extremely high while it is very poor for
others. Moreover, the allelic association between
available polymorphisms and the alleles of in-
terest (the functional ones) is never guaranteed
even within the same gene. Allelic association
results from the complex and unique history of
the population under study as well as from sto-
chastic events. It may thus differ from one popu-
lation to another. Consequently, it may be diffi-
cult to replicate results in candidate gene stud-
ies. For a same candidate gene marker and a same
sample size, the TDT could be significant in a
given population but not in another one. This is
the case, for example, for the studies of a CTLA4
exon 1 49 A/G polymorphism in auto-immune
diseases (Table 6). In type I diabetes (see for
review Nistico et al. 1996), the frequency of al-
lele G is significantly higher in IDDM patients
than in controls for Mediterranean Europeans
and Mexican Americans. This is not found in
Sardinians and in Caucasian Americans. For co-
eliac disease, the frequency of allele A is in-
creased in the Scandinavian and French patients
but not in the Italian and Tunisian ones (Clot et
al. 2000). Given the above results, it becomes
difficult to discriminate between different inter-
pretations:

• false positive results ?
• heterogeneity in the genetic determinism

of the disease ?
• heterogeneity in the allelic associations

between the studied populations ?
Going from demonstrating the role of a gene

to understanding its functionality is the next step
for unravelling the genetic component of a dis-
ease. While the degree of mapping resolution is
of course finer in a candidate gene approach than
in a random marker linkage approach, it is not
sufficient to allow for the identification of a func-
tional polymorphism. The susceptibility to a dis-
ease may result not only from a single variant in
a gene but also from a complex interaction of
several intragenic variants. Moreover, several
good candidates may be clustered and the diffi-
culty is then to discriminate between them. Al-
lelic associations between two loci is created
through mutation, population admixture, selec-
tion. Allelic associations and physical distances
do not correlate significantly over small regions
(Jorde et al. 1994). A prerequisite to progress in
genetic epidemiology is therefore a good knowl-
edge of population characteristics through popu-
lation genetics studies.

PERSPECTIVES

Mapping disease loci that predispose to mul-
tifactorial diseases is the present challenge of ge-
neticists. Most of the time, however, the eupho-
ria of linkage findings is followed by numerous
failures to confirm them in independent samples.
The uncertainty on both the number of genetic
factors involved and the importance of their
marginal effect makes it impossible to predict
success. The best possible approach is thus to
design the most efficient strategies, keeping in
mind that only factors with fairly strong effect,
i.e. those for which there is a large difference in
the patient and control genotype distribution, will
be detected. Genetic risk factor for a multifacto-
rial disease and rare morbid mutation for mono-
genic disease are entirely different concepts.
Shifting from the monogenic disease paradigm
is one of the most difficult steps.

The real difficulty is to increase the power
of genetic risk factor detection without increas-
ing the rate of false positive. This is not simple
since with the increasing knowledge of the ge-
nome one is tempted to perform as many tests
as feasible.

First, genetic heterogeneity in the data should

Table 6: Associated allele of the CTLA4 exon 1 49 A/G
polymorphism in different populations

Coeliac disease Type I diabetes

French A Mediterranean European G
Scandinavian A Mexican American G
Italian ns Caucasian American ns
Tunisian ns Sardinian ns



62 F. CLERGET-DARPOUX, H. SELINGER-LENEMAN AND M-C BABRON

be minimised. The problem is that we do not
know how genetic heterogeneity correlates to
whatever is observable. Thus, the best is to limit
heterogeneity on different criteria: clinical, popu-
lation, familial recurrence of the disease. Large
extended pedigrees with many affected, which
are very informative when dealing with a mo-
nogenic disease, may be source of heterogene-
ity when studying a multifactorial disease. It is
also important to take into account already
known co-variables and risk factor(s) (genetic
and/or environmental). This may be fundamen-
tal in case of interaction. For example condition-
ing on HLA may greatly increase the power
when studying non HLA genetic risk factors in
an auto-immune disease. The degree of expo-
sure to the infectious agent is clearly necessary
when studying the susceptibility to an infectious
disease.

Focusing on a limited number of well cho-
sen candidate genes limits the number of tests
and, as such, increases detection power. Studies
of the disease in animal species, studies of traits
correlated with the disease but with a simple
mode of inheritance, or physiopathological stud-
ies may help in this choice.

Working in particular population structures
may also help. In particular, disease studies
may be performed in isolated populations with
recent founders and new methods (Bourgain
et al. 2000) are currently developed which
benefit from the particularities of these popu-
lations. In addition to a lower degree of het-
erogeneity, allelic association is often present
between loci which are not necessarily very
close. However, here again, one must escape
from the paradigm of monogenic disease and
must banish the concept of a unique ancestral
mutation.

Unravelling the genetic component of multi-
factorial diseases is not a simple endeavour and
requires developing the appropriate strategies.
This implies tight collaborations among clinicians,
physiopathologists, geneticists (molecular, popu-
lation, epidemiologist) and biostatisticians.
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